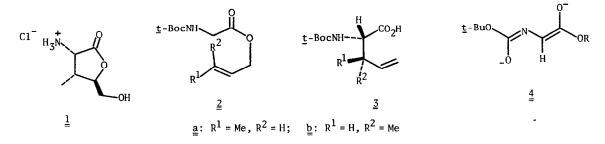
STEREOSELECTIVE SYNTHESIS OF THE DIHYDROXYISOLEUCINE CONSTITUENT OF THE AMANITA MUSHROOM TOXINS


Paul A. Bartlett*, Donna J. Tanzella, and James F. Barstow Department of Chemistry, University of California Berkeley, California 94720

Ester-enolate Claisen rearrangement of <u>cis</u>-crotyl N-t-Boc-glycinate and iodolactonization of the N-phthaloyl derivative of the resulting unsaturated acid are used as the stereocontrolling steps in a synthesis of the title compound.

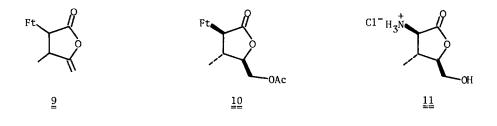
From the Green Death Cap Toadstool, Amanita Phalloides, Wieland and his coworkers have isolated and determined the structures of a number of toxic constituents: the phallotoxins and the amatoxins. 1 These cyclic peptides contain several unusual amino acid components, among them (2S, 3R, 4R)- γ , δ -dihydroxyisoleucine, which is isolated as the lactone hydrochloride <u>1</u> on hydrolysis of α - and β -amanitin.² The stereostructure of this compound was proven by a combination of chemical correlation 3 and X-ray crystallography. 4

In the early stages of an investigation of the ester-enolate Claisen rearrangement 5 as a diastereoselective method for the construction of α -amino acid derivatives,⁶ we applied this reaction to the synthesis of the diastereomeric γ,δ -dehydroisoleucines <u>3a</u> and <u>3b</u>. We present here the results of this initial study, and the subsequent elaboration of diastereomer $\underline{3b}$ to lactone 1 (racemic) in a stereoselective manner. The only previously reported synthesis of 1afforded the natural diastereomer as a minor component in a mixture of the four possible racemates.⁷


Trans-crotyl N-t-butoxycarbonylglycinate, 2a,⁸ was synthesized by the dicyclohexylcarbodiimide/4-(dimethylamino)pyridine-induced coupling of the carboxylic acid with trans-crotyl alcohol.⁹ Deprotonation of this material with two equivalents of lithium isopropylcyclohexylamide (THF, -75°C for 5 min), silylation (2 eq. Me₃SiCl), rearrangement (reflux for 1 hr), and desilylation (MeOH, room temp. overnight) afford a 60% yield of acid $\underline{3}^8$ as a 10:1 mixture of diastereomers. Catalytic hydrogenation (10% Pd/C), removal of the protecting group (10% HCl in MeOH, Δ , 1 hr), and comparison with authentic isoleucine by 13 C-NMR indicated that the major diastereomer has the allo configuration 3a. Making the reasonable assumption that Claisen rearrangement of the bis(silylated) intermediate involves the chair-like transition state, 10 it

follows that the favored enolate has the enolate oxygen and deprotonated carbamate moieties in a cis relationship (see structure 4).

We anticipated that the desired diastereomer $\underline{3b}$ would be favored on rearrangement of the \underline{cis} -crotyl ester $\underline{2b}$.⁸ Although this substrate could be prepared analogously using \underline{cis} -crotyl alcohol, we found it experimentally easier to perform the esterification with 2-butyn-1-ol and semi-hydrogenate the acetylenic product⁸ (Pd/SrCO₃, MeOH). Rearrangement of $\underline{2b}$ by the sequence described above proceeds in 60% yield and 6:1 diastereoselectivity to give the expected isomer $\underline{3b}$ (mp 119-121°C, from MeCN).⁸ We studied the N-carbobenzoxy and -benzoyl analogs of $\underline{2a}$ and $\underline{2b}$ as well, but found that the stereoselectivity of their rearrangements is lower.


For the stereocontrolled functionalization of the double bond in $\underline{3b}$, we planned to use the iodolactonization process which we developed previously.¹¹ The preferred conditions for maximal stereoselectivity: iodine in acetonitrile in the absence of base, result in cleavage of the \underline{t} -Boc protecting group by hydrogen iodide generated during the course of the reaction. The alternative, non-acidic procedure for thermodynamically controlled iodolactonization: cyclization of the methyl ester (formed with MeI/K₂CO₃/18-crown-6, 73% yield),⁸ was in its turn foiled by competitive cyclization of the carbamate and formation of the cyclic urethane $\underline{5}^9$ as the major identifiable product. After investigating a series of N-protecting groups, we found that replacement of the \underline{t} -Boc moiety with the phthaloyl group (1) TFA at 21°C; 2) Nefkens' reagent,¹² 70% yield) affords a derivative $\underline{6}$ which is iodolactonized smoothly to give the anticipated product $\underline{7}^8$ in 82% yield (mp 154-155°C, from CH₂Cl₂/pet. ether).¹³ In the crude reaction product, less than 5% of the β,γ -cis isomer is present.

(Ft = phthalimido)

We encountered difficulties in displacing the iodide as well: reaction of $\underline{7}$ with potassium acetate under a variety of conditions gives only the γ -methylene lactone elimination product $\underline{9}^{14}$ On the other hand, treatment with silver acetate in acetic acid at 120°C results in simultaneous epimerization of the amino substituent, affording the thermodynamically more stable $\underline{\text{trans, trans}}$ isomer $\underline{10}$ (mp 130-133°C, from CHCl₃/pet. ether)⁸ in 50% yield. This proved to be simply the result of acid-catalysis, and was avoided by using the more soluble trifluoroacetate salt in DMF at room temperature. Under these conditions trifluoroacetate $\underline{8}$ is formed without significant epimerization.¹⁵ Without purification of this labile material, $\underline{8}$ was hydrolyzed with 20% HCl at 110°C for 24 hr, affording racemic α -amino lactone hydrochloride $\underline{1}$ in 80% yield from iodolactone $\underline{7}$. The hydrolysis step is unfortunately also accompanied by about 10% epimerization of the amino group (probably prior to complete cleavage of the phthaloy1 moiety); however, recrystallization (MeOH/ether) affords the pure diastereomer, mp 209.5-211°C.¹⁵

That our synthetic material had the same relative stereochemistry as the naturally-derived isomer was evident from the ¹H-NMR spectrum. The mixture of four diastereomeric racemates synthesized by Georgi and Wieland shows doublets due to the β -methyl groups at δ 1.08, ~1.13, 1.25, and ~1.33 ppm in 20% DCl.⁷ The doublet at δ 1.25 arises from the natural diastereomer, and corresponds to that observed for our synthetic racemate. The 2-epi diastereomer <u>11</u>, which appears as a side product in the hydrolysis of <u>8</u> or is obtained directly by cleavage of <u>10</u>, is responsible for the methyl doublet at δ 1.33 ppm.

Acknowledgment. Support by the National Institutes of Health (grant no. CA-16616) is gratefully acknowledged.

REFERENCES AND NOTES

- Th. Wieland, <u>Science</u>, <u>159</u>, 946 (1968); Th. Wieland, <u>Naturwissenschaften</u>, <u>59</u>, 225 (1972); Th. Wieland and H. Faulstich, <u>CRC Crit. Rev. Biochem.</u>, <u>5</u>, 185 (1978).
- Th. Wieland and A. Höfer, J.L. Ann. Chem., <u>619</u>, 35 (1958); P. Pfaender and Th. Wieland, <u>ibid.</u>, <u>700</u>, 126 (1966).
- 3. Th. Wieland and A. Fahrmeir, J.L. Ann. Chem., 736, 95 (1970).
- 4. A. Gieren, et al., J.L. Ann. Chem., 1561 (1974).
- R.E. Iroland, R.H. Mueller, and A.K. Willard, J. Am. Chem. Soc., <u>98</u>, 2868 (1976);
 R.E. Ireland and C.S. Wilcox, Jr., <u>Tetrahedron Lett.</u>, 2839 (1977).
- 6. P.A. Bartlett and J.F. Barstow, submitted for publication.
- 7. V. Georgi and Th. Wieland, J.L. Ann. Chem., 700, 149 (1966).
- 8. This compound was fully characterized spectroscopically and by combustion analysis.
- 9. A. Hassner and V. Alexanian, Tetrahedron Lett., 4475 (1978).
- P. Vittorelli, H.-J. Hansen, and H. Schmid, <u>Helv. Chim. Acta</u>, <u>58</u>, 1293 (1975);
 W.S. Johnson, et al., <u>J. Am. Chem. Soc.</u>, <u>92</u>, 741 (1970).
- 11. P.A. Bartlett and J. Myerson, J. Am. Chem. Soc., 100, 3950 (1978).
- 12. H.L. Nefkens, G.I. Tesser, and R.J.F. Nivard, Rec. Trav. Chim., 79, 688 (1960).
- 13. From $\underline{3a}$ the <u>trans, trans</u> diastereomer of $\underline{7}$ was prepared similarly (mp 202-203°C).⁸
- 14. V. Jäger and H.J. Günther, Tetrahedron Lett., 2543 (1977).
- 15. In the isomeric series, the <u>trans, trans</u> diastereomer of $\frac{8}{2}$ was obtained in crystalline form (mp 155-160°C (dec), from CHC1 /ether).¹⁶
- 16. Characterized spectroscopically and by exact mass.

(Received in USA 5 October 1981)